Skip to main content

A DARK MATTER HALO AS SOURCE OF GAMMA-RAYS?

Image: Illustration of a dark matter halo around the Milky Way. Credit: ESO/L. Calçada.


The gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended.

In a recent paper (Bertoni et al. 2016) the authors use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects.

They argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky.

If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo.

The authors assess that if 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ∼18-33 GeV and an annihilation cross section on the order of σv ∼ 10−26 cm3/s, similar to the values required to generate the Galactic Center gamma-ray excess.

Although the information available does not allow to determine the mass of or distance to this subhalo, simulations suggest that the first gamma-ray detected subhalos could plausibly be on the scale of an ultra-faint dwarf galaxy located at a distance of ~10 kpc, or a much smaller clump of dark matter residing within a few tens of parsecs of the Solar System.


  • Bertoni et al. 2016 - Is The Gamma-Ray Source 3FGL J2212.5+0703 A Dark Matter Subhalo? (arXiv)

Comments

Popular posts from this blog

‘Monster’ Planet Discovery Challenges Formation Theory

Artist’s illustration of a "hot Jupiter". Image Credit: NASA/CXC/M. Weiss A new research presents the discovery of NGTS-1b, a hot-Jupiter transiting an early M-dwarf host in a P~2.6 days orbit discovered as part of the Next Generation Transit Survey (NGTS). The planet has a mass of M~0.8 M(jupiter) making it the most massive planet ever discovered transiting an M-dwarf. NGTS-1b is the third transiting giant planet found around an M-dwarf, reinforcing the notion that close-in gas giants can form and migrate similar to the known population of hot Jupiters around solar type stars. The existence of the 'monster' planet, 'NGTS-1b', challenges theories of planet formation which state that a planet of this size could not be formed around such a small star. According to these theories, small stars can readily form rocky planets but do not gather enough material together to form Jupiter-sized planets. Such massive planets were not thought to exist ar...

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

CONSTRAINTS ON THE LOCATION OF A POSSIBLE 9TH PLANET

Image: The six most distant known objects in the solar system with orbits exclusively beyond Neptune (magenta) all mysteriously line up in a single direction. Such an orbital alignment can only be maintained by some outside force, Batygin and Brown say. Their paper argues that a planet with 10 times the mass of the earth in a distant eccentric orbit anti-aligned with the other six objects (orange) is required to maintain this configuration. Credit: Caltech The astronomers have noticed some of the dwarf planets and other small, icy objects tend to follow orbits that cluster together. To explain the unusual distribution of these Kuiper Belt objects, several authors have advocated the existence of a superEarth planet in the outer solar system ( planet Nine or planet X ).