Skip to main content

A DARK MATTER HALO AS SOURCE OF GAMMA-RAYS?

Image: Illustration of a dark matter halo around the Milky Way. Credit: ESO/L. Calçada.


The gamma-ray source 3FGL J2212.5+0703 shows evidence of being spatially extended.

In a recent paper (Bertoni et al. 2016) the authors use a large sample of active galactic nuclei and other known gamma-rays sources as a control group, confirming, as expected, that statistically significant extension is rare among such objects.

They argue that the most likely (non-dark matter) explanation for this apparent extension is a pair of bright gamma-ray sources that serendipitously lie very close to each other, and estimate that there is a chance probability of ~2% that such a pair would exist somewhere on the sky.

If a gamma-ray source without detectable emission at other wavelengths were unambiguously determined to be spatially extended, it could not be explained by known astrophysics, and would constitute a smoking gun for dark matter particles annihilating in a nearby subhalo.

The authors assess that if 3FGL J2212.5+0703 is a dark matter subhalo, it would imply that dark matter particles have a mass of ∼18-33 GeV and an annihilation cross section on the order of σv ∼ 10−26 cm3/s, similar to the values required to generate the Galactic Center gamma-ray excess.

Although the information available does not allow to determine the mass of or distance to this subhalo, simulations suggest that the first gamma-ray detected subhalos could plausibly be on the scale of an ultra-faint dwarf galaxy located at a distance of ~10 kpc, or a much smaller clump of dark matter residing within a few tens of parsecs of the Solar System.


  • Bertoni et al. 2016 - Is The Gamma-Ray Source 3FGL J2212.5+0703 A Dark Matter Subhalo? (arXiv)

Comments

Popular posts from this blog

ORBITAL PERIODS OF THE PLANETS

For orbital period generally we refer to the sidereal period, that is the temporal cycle that it takes an object to make a full orbit, relative to the stars. This is the orbital period in an inertial (non-rotating) frame of reference (365,25 days for the earth).

ALMA'S IMAGE OF A NEW PLANET FORMATION IN A BINARY STARS SYSTEM

A composite image of the HD 142527 binary star system from data captured by ALMA shows a distinctive arc of dust (red) and a ring of carbon monoxide (blue and green). The red arc is free of gas, suggesting the carbon monoxide has "frozen out", forming a layer of frost on the dust grains in that region. Astronomers speculate this frost provides a boost to planet formation. The two dots in the center represent the two stars in the system. Credit: Andrea Isella/Rice University; B. Saxton (NRAO/AUI/NSF); ALMA (NRAO/ESO/NAOJ) The Atacama Large Millimeter/submillimeter Array (ALMA) has observed a new very early stage of planet formation around the binary star system HD 142527 (in the costellation of Lupus) and has provided fresh insights into the planet-forming potential of a binary system.

Fermi Bubbles

Image: A giant gamma-ray structure was discovered in 2010 by processing Fermi all-sky data at energies from 1 to 10 billion electron volts, shown here. The dumbbell-shaped feature (center) emerges from the galactic center and extends 50 degrees north and south from the plane of the Milky Way, spanning the sky from the constellation Virgo to the constellation Grus. Credits: NASA/DOE/Fermi LAT/D. Finkbeiner et al. At a time when our earliest human ancestors mastered walking upright the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.